A Discontinuity Adaptive Method for Super-Resolution of License Plates
نویسندگان
چکیده
In this paper, a super-resolution algorithm tailored to enhance license plate numbers of moving vehicles in real traffic videos is proposed. The algorithm uses the information available from multiple, sub-pixel shifted, and noisy low-resolution observations to reconstruct a high-resolution image of the number plate. The image to be superresolved is modeled as a Markov random field and is estimated from the low-resolution observations by a graduated non-convexity optimization procedure. To preserve edges in the reconstructed number plate for better readability, a discontinuity adaptive regularizer is proposed. Experimental results are given on several real traffic sequences to demonstrate the edge preserving capability of the proposed method and its robustness to potential errors in motion and blur estimates. The method is computationally efficient as all operations are implemented locally in the image domain.
منابع مشابه
Multi-frame Super Resolution for Improving Vehicle Licence Plate Recognition
License plate recognition (LPR) by digital image processing, which is widely used in traffic monitor and control, is one of the most important goals in Intelligent Transportation System (ITS). In real ITS, the resolution of input images are not very high since technology challenges and cost of high resolution cameras. However, when the license plate image is taken at low resolution, the license...
متن کاملAdaptive Modified PCA for Face Recognition
This paper presents a novel hybrid method for extracting license plates and recognizing characters from low-quality videos using morphological operations and Adaboost algorithm. First of all, the hybrid method uses the Adaboost algorithm for training a detector to detect license plates. This algorithm works well to detect license plates having lower intensities but fails to detect license plate...
متن کاملSuper-Resolution Image Reconstruction using the Discontinuity Adaptive ICM
We propose a Bayesian approach for the super resolution image reconstruction (SRIR) problem using a Markov random field (MRF) for image characterization. SRIR consists in using a set of low-resolution (LR) images from the same scene to generate a high-resolution (HR) estimate of the original object. Using a Bayesian formulation, it is possible to incorporate previously known spatial information...
متن کاملA Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملتشخیص پویای پلاک خودرو مبتنی بر مورفولوژی برای تصاویر رنگی و مادون قرمز
This paper proposes to use the method of edge detection, morphology, and dynamic image thickening for license plate extraction from images. In the proposed algorithm, a different thickening is used for rear and front parts of the image; besides, to increase the segmentation rate, determination of the license plate frame using standard deviation in the vertical histogram diagram is suggested. Fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006